skip to main content


Search for: All records

Creators/Authors contains: "Salem, Tareq Si"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally repre- sented as points in a continuous space. This is for example the case of 360◦ videos where user’s head orientation—expressed in spherical coordinates—determines what part of the video needs to be retrieved, or of recommendation systems where a metric learning technique is used to embed the objects in a finite dimensional space with an opportune distance to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose GRADES, a new similarity caching policy that uses gradient descent to navigate the continuous space and find appropriate objects to store in the cache. We provide theoretical convergence guarantees and show GRADES increases the similarity of the objects served by the cache in both applications mentioned above. 
    more » « less
  2. null (Ed.)
    A similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally represented as pointsinacontinuousspace.Examplesinclude360◦ videoswhere user’s head orientation—expressed in spherical coordinates— determines what part of the video needs to be retrieved, and recommendation systems where the objects are embedded in a finite-dimensional space with a distance metric to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose GRADES, a new similarity caching policy that uses gradient descent to navigate the continuous space and find the optimal objects to store in the cache. We provide theoretical convergence guarantees and show GRADES increases the similarity of the objects served by the cache in both applications mentioned above. 
    more » « less